Time intervals measured by a clock give the following readings :
$1.25 \;s , 1.24\; s , 1.27\; s , 1.21 \;s$ and $1.28\; s$
What is the percentage relative error of the observations?
$1.6$
$2$
$4$
$16$
A physical quantity $P$ is given by $P= \frac{{{A^3}{B^{\frac{1}{2}}}}}{{{C^{ - 4}}{D^{\frac{3}{2}}}}}$. The quantity which brings in the maximum percentage error in $P$ is
If the error in the measurement of radius of a sphere is $2\%$ then the error in the determination of volume of the sphere will be ........ $\%$
The percentage error in the measurement of $g$ is $.....\%$ (Given that $g =\frac{4 \pi^2 L }{ T ^2}, L =(10 \pm 0.1)\,cm$, $T =(100 \pm 1)\,s )$
What is estimation of error ? Write method for estimation.
A student performs an experiment for determination of $g \left(=\frac{4 \pi^{2} l }{ T ^{2}}\right), \ell =1 m$ and he commits an error of $\Delta \ell$. For $T$ he takes the time of $n$ oscillations with the stop watch of least count $\Delta T$ and he commits a human error of $0.1 s$ For which of the following data, the measurement of $g$ will be most accurate?