Three coins are tossed. Describe Three events which are mutually exclusive but not exhaustive.
When three coins are tossed, the sample space is given by
$S =\{ HHH , \,HHT , \,HTH ,\, HTT , \,THH , \,THT , \,TTH , \,TTT \}$
Three events that are mutually exclusive but not exhaustive can be
$A:$ getting exactly three heads
$B:$ getting one head and two tails
$C:$ getting one tail and two heads
i.e. $A=\{H H H\}$
$B =\{ HTT , \,THT, \, THH \}$
$C =\{ HHT , \,HTH , \,THH \}$
This is because $A \cap B=B \cap C=C \cap A=\phi,$ but $A \cup B \cup C \neq S$
$A$ and $B$ toss a coin alternatively, the first to show a head being the winner. If $A$ starts the game, the chance of his winning is
The probability that an ordinary or a non-leap year has $53$ sunday, is
Let $M$ be the maximum value of the product of two positive integers when their sum is $66$. Let the sample space $S=\left\{x \in Z: x(66-x) \geq \frac{5}{9} M\right\}$ and the event $A=\{ x \in S : x$ is a multiple of $3$ $\}$. Then $P ( A )$ is equal to
Two dice are thrown. If first shows $5$, then the probability that the sum of the numbers appears on both is $8$ or more than $8$, is
In each of the following experiments specify appropriate sample space A boy has a $1$ rupee coin, a $2$ rupee coin and a $5$ rupee coin in his pocket. He takes out two coins out of his pocket, one after the other.