The wave described by $y = 0.25\,\sin \,\left( {10\pi x - 2\pi t} \right)$ , where $x$ and $y$ are in $meters$ and $t$ in $seconds$ , is a wave travelling along is

  • A

    $+ve$ $x$ direction with frequency $1\, Hz$ and wavelength $\lambda  = 0.2\,m$.

  • B

    $-ve$ $x$ direction with amplitude $0.25\, m$ and wavelength $\lambda  = 0.2\,m$.

  • C

    $-ve$ $x$ direction with frequency $1\, Hz.$

  • D

    $+ve$ $x$ direction with frequency $\pi\, Hz$ and wavelength $\lambda  = 0.2\,m$

Similar Questions

A train whistling at constant frequency is moving towards a station at a constant speed $v$. The train goes past a stationary observer on the station. The frequency $n$ of the sound as heard by the observer is plotted as a function of time $t$. Identify the expected curve

Which of the following is correct ?

The displacement $y$ of a wave travelling in the $x-$ direction is given by $y = {10^{ - 4}}\sin \left( {600t - 2x+\frac{\pi }{3}} \right)$ metre, where $x$ is expressed in metres and $t$ in seconds. The speed of the wave in $ms^{-1}$, is

An engine is moving towards a wall with a velocity $50\, ms^{-1}$ emits a note of $1.2\, kHz$. The speed of sound in air is $350\, ms^{-1}$. The frequency of the note after reflection from the wall as heard by the driver of the engine is ..... $kHz$

A transverse wave is described by the equation $y = {y_0}\,\sin \,2\pi \left( {ft - \frac{x}{\lambda }} \right)$ . The maximum particle velocity is equal to four times the wave velocity if