The system of linear equations $3 x-2 y-k z=10$; $2 x-4 y-2 z=6$ ; $x+2 y-z=5\, m$ is inconsistent if
$k =3, m =\frac{4}{5}$
$k \neq 3, m \in R$
$k \neq 3, m \neq \frac{4}{5}$
$k =3, m \neq \frac{4}{5}$
If the system of equations
$x-2 y+3 z=9$
$2 x+y+z=b$
$x-7 y+a z=24$
has infinitely many solutions, then $a - b$ is equal to
If the system of equations $\mathrm{x}+4 \mathrm{y}-\mathrm{z}=\lambda$, $7 x+9 y+\mu z=-3,5 x+y+2 z=-1$ has infinitely many solutions, then $(2 \mu .+3 \lambda)$ is equal to :
The number of solutions of equations $x + y - z = 0$, $3x - y - z = 0, \,x - 3y + z = 0$ is
$\left| {\,\begin{array}{*{20}{c}}{bc}&{bc' + b'c}&{b'c'}\\{ca}&{ca' + c'a}&{c'a'}\\{ab}&{ab' + a'b}&{a'b'}\end{array}\,} \right|$ is equal to
If $a\, -\, 2b + c = 1$ , then value of $\left| {\begin{array}{*{20}{c}}
{x + 1}&{x + 2}&{x + a} \\
{x + 2}&{x + 3}&{x + b} \\
{x + 3}&{x + 4}&{x + c}
\end{array}} \right|$ is