The reaction $CH _{3} COF + H _{2} O \quad \rightleftharpoons CH _{3} COOH + HF$
Condition $I$ $:$ $\left[ H _{2} O \right]_{0}=1.00 \,M$
$\left[ CH _{3} COF \right]_{0}=0.01 \,M$
Condition $II$ $:$ $\left[ H _{2} O \right]_{0}=0.02 \,M$
$\left[ CH _{3} COF \right]_{0}=0.80 \,M$
Condition - $I$ | Condition - $II$ | ||
Time $min$ |
$\left[ CH _{3} COF \right]$ $M$ |
Time $min$ |
$\left[ H _{2} O \right] \,M$ |
$0$ | $0.01000$ | $0$ | $0.0200$ |
$10$ | $0.00867$ | $10$ | $0.0176$ |
$20$ | $0.00735$ | $20$ | $0.0156$ |
$40$ | $0.00540$ | $40$ | $0.0122$ |
Determine the order of reaction and calculate rate constant.
$(i)$ Reaction is pseudo $1^{\text {st }}$ reaction, in which $\left[\mathrm{H}_{2} \mathrm{O}\right]$ is constant.
$(ii)$ Reaction is pseudo $1^{\text {st }}$ reaction, but in order to this reaction $=2$.
For a reaction $X + Y \to Z$, rate $ \propto \, [X]$. What is $(i)$ molecularity and $(ii)$ order of reaction ?
The rate of a gaseous reaction is given by the expression $K\,[A]\,[B]$. If the volume of the reaction vessel is suddenly reduced to $1/4^{th} $ of the initial volume, the reaction rate relating to original rate will be
What is the order of reaction $r\, = \,k{[A]^{\frac{3}{2}}}\,{[B]^2}$ ?
If the concentration of the reactants is increased, the rate of reaction
The experimental data for reaction
$2A + B_2 \longrightarrow 2AB$
Exp. | $[A]$ | $[B_2]$ | Rate $(mol\,L^{-1}\,S^{-1})$ |
$1$ | $0.50$ | $0.50$ | $1.6 \times {10^{ - 4}}$ |
$2$ | $0.50$ | $1.00$ | $3.2 \times {10^{ - 4}}$ |
$3$ | $1.00$ | $1.00$ | $3.2 \times {10^{ - 4}}$ |
The rate law