The mid-point of the domain of the function $f(x)=\sqrt{4-\sqrt{2 x+5}}$ real $x$ is

  • [KVPY 2012]
  • A

    $\frac{1}{4}$

  • B

    $\frac{3}{2}$

  • C

    $\frac{2}{3}$

  • D

    $-\frac{2}{5}$

Similar Questions

Let $f:(1,3) \rightarrow \mathrm{R}$ be a function defined by

$f(\mathrm{x})=\frac{\mathrm{x}[\mathrm{x}]}{1+\mathrm{x}^{2}},$ where $[\mathrm{x}]$ denotes the greatest

integer $\leq \mathrm{x} .$ Then the range of $f$ is

  • [JEE MAIN 2020]

Let $X$ be a non-empty set and let $P(X)$ denote the collection of all subsets of $X$. Define $f: X \times P(X) \rightarrow R$ by $f(x, A)=\left\{\begin{array}{ll}1, & \text { if } x \in A \\ 0, & \text { if } x \notin A^*\end{array}\right.$ Then, $f(x, A \cup B)$ equals

  • [KVPY 2011]

If $f(x) = \cos (\log x)$, then $f(x)f(y) - \frac{1}{2}[f(x/y) + f(xy)] = $

  • [IIT 1983]

If $f(x) = \log \frac{{1 + x}}{{1 - x}}$, then $f(x)$ is

Let, $f(x)=\left\{\begin{array}{l} x \sin \left(\frac{1}{x}\right) \text { when } x \neq 0 \\ 1 \text { when } x=0 \end{array}\right\}$ and $A=\{x \in R: f(x)=1\} .$ Then, $A$ has

  • [KVPY 2019]