The largest interval lying in $\left( { - \frac{\pi }{2},\frac{\pi }{2}} \right)$ for which the function, $f\left( x \right) = {4^{ - {x^2}}} + {\cos ^{ - 1}}\left( {\frac{x}{2} - 1} \right) + \log \left( {\cos x} \right)$  is defined is

  • [AIEEE 2007]
  • A

    $\left[ { - \frac{\pi }{4},\frac{\pi }{2}} \right)$

  • B

    $\left[ {0,\frac{\pi }{2}} \right)$

  • C

    $\left[ {0,\pi } \right]$

  • D

    $\;\left( { - \frac{\pi }{2},\frac{\pi }{2}} \right)$

Similar Questions

The period of the function $f (x) =$$\frac{{|\sin x| + |\cos x|}}{{|\sin x - \cos x|}}$  is

If domain of function $f(x) = \sqrt {\ln \left( {m\sin x + 4} \right)} $ is $R$ , then number of possible integral values of $m$ is

The domain of the function $f(x){ = ^{16 - x}}{\kern 1pt} {C_{2x - 1}}{ + ^{20 - 3x}}{\kern 1pt} {P_{4x - 5}}$, where the symbols have their usual meanings, is the set

The domain of $f(x) = \frac{1}{{\sqrt {{{\log }_{\frac{\pi }{4}}}({{\sin }^{ - 1}}x) - 1} }}$,is

Let $f(x) = (1 + {b^2}){x^2} + 2bx + 1$ and $m(b)$ the minimum value of $f(x)$ for a given $b$. As $b$ varies, the range of $m(b)$ is

  • [IIT 2001]