The equation of transverse wave in stretched string is $y = 5\,\sin \,2\pi \left[ {\frac{t}{{0.04}} - \frac{x}{{50}}} \right]$ Where distances are in cm and time in second. The wavelength of wave is .... $cm$
$15$
$10$
$25$
$50$
The wave described by $y = 0.25\,\sin \,\left( {10\pi x - 2\pi t} \right)$ , where $x$ and $y$ are in $meters$ and $t$ in $seconds$ , is a wave travelling along is
Equation of a plane progressive wave is given by $y = 0.6\sin 2\pi \left( {t - \frac{x}{2}} \right)$. On reflection from a denser medium its amplitude becomes $2/3$ of the amplitude of the incident wave. The equation of the reflected wave is
Two monoatomic ideal gases $1$ and $2$ of molecular masses $M_1$ and $M_2$ respectively are enclosed in separate containers kept a the same temperature. The ratio of the speed of sound in gas $1$ to that in gas $2$ is
Given below are some functions of $x$ and $t$ to represent the displacement (transverse or longitudinal) of an elastic wave. State which of these represent a travelling wave
A metallic wire of length $L$ is fixed between two rigid supports. If the wire is cooled through a temperature difference $\Delta T (Y =$ young’s modulus, $\rho =$ density, $\alpha =$ coefficient of linear expansion) then the frequency of transverse vibration is proportional to :