The angle between the tangents drawn from the origin to the circle $(x -7)^2 + (y + 1)^2 = 25$ is :-

  • A

    $\frac{\pi}{3}$

  • B

    $\frac{\pi}{6}$

  • C

    $\frac{\pi}{2}$

  • D

    $\frac{\pi}{8}$

Similar Questions

$\text { Let } $S$ \text { be the circle in the } xy \text {-plane defined by the equation } x ^2+ y ^2=4 \text {. }$

($1$) Let $E_1, E_2$ and $F_1 F_2$ be the chords of $S$ passing through the point $P_0(1,1)$ and parallel to the $x$-axis and the $y$-axis, respectively. Let $G _1 G _2$ be the chord of $S$ passing through $P _0$ and having slope -$1$ . Let the tangents to $S$ at $E_1$ and $E_2$ meet at $E_3$, the tangents to $S$ at $F_1$ and $F_2$ meet at $F_3$, and the tangents to $S$ at $G_1$ and $G_2$ meet at $G_3$. Then, the points $E_3, F_3$, and $G _3$ lie on the curve

$(A)$ $x+y=4$ $(B)$ $(x-4)^2+(y-4)^2=16$ $(C)$ $(x-4)(y-4)=4$ $(D)$ $x y=4$

($2$) Let $P$ be a point on the circle $S$ with both coordinates being positive. Let the tangent to $S$ at $P$ intersect the coordinate axes at the points $M$ and $N$. Then, the mid-point of the line segment MN must lie on the curve

$(A)$ $(x+y)^2=3 x y$ $(B)$ $x^{2 / 3}+y^{2 / 3}=2^{4 / 3}$ $(C)$ $x^2+y^2=2 x y$ $(D)$ $x^2+y^2=x^2 y^2$

Give the answer or quetion ($1$) and ($2$)

  • [IIT 2018]

The equation of the chord of the circle ${x^2} + {y^2} = {a^2}$ having $({x_1},{y_1})$ as its mid-point is

  • [IIT 1983]

The gradient of the tangent line at the point $(a\cos \alpha ,a\sin \alpha )$ to the circle ${x^2} + {y^2} = {a^2}$, is

If $2x - 4y = 9$ and $6x - 12y + 7 = 0$ are the tangents of same circle, then its radius will be

If the lines $3x - 4y + 4 = 0$ and $6x - 8y - 7 = 0$ are tangents to a circle, then the radius of the circle is

  • [IIT 1984]