Statement $-1 :$ $\sim (p \leftrightarrow \sim q)$ is equivalent to $p\leftrightarrow q $
Statement $-2 :$ $\sim (p \leftrightarrow \sim q)$ s a tautology
Statement $-1$ is true, Statement $-2$ is true; Statement $-2$ is a correct explanation for Statement $-1$
Statement $-1$ is true, Statement $-2$ is true; Statement $-2$ is not a correct explanation for Statement $-1$
Statement $-1$ is false, Statement $-2$ is true
Statement $-1$ is true, Statement $-2$ is false
$(p\; \wedge \sim q) \wedge (\sim p \wedge q)$ is
The negation of the Boolean expression $ \sim \,s\, \vee \,\left( { \sim \,r\, \wedge \,s} \right)$ is equivalent to
Which of the following statements is a tautology?
When does the current flow through the following circuit
Consider
Statement $-1 :$$\left( {p \wedge \sim q} \right) \wedge \left( { \sim p \wedge q} \right)$ is a fallacy.
Statement $-2 :$$(p \rightarrow q) \leftrightarrow ( \sim q \rightarrow \sim p )$ is a tautology.