Obtain the expression of electric field by a straight wire of infinite length and with linear charge density $'\lambda '$.
Consider an infinitely long thin straight wire with uniform linear charge density $\lambda$.
Suppose we take the radial vector from $\mathrm{O}$ to $\mathrm{P}$ and rotate it around the wire. The points $\mathrm{P}, \mathrm{P}^{\prime}$,
$\mathrm{P}^{\prime \prime}$ so obtained are completely equivalent with respect to the charged wire.
This implies that the electric field must have the same magnitude at these points.
The direction of electric field at every point must be radial (outward if $\lambda>0$, inward $\lambda<0$ ).
Since the wire is infinite, electric field does not depend on the position of $\mathrm{P}$ along the length of
the wire.
The electric field is everywhere radial in the plane cutting the wire normally and its magnitude
depends only on the radial distance $r .$
Imagine a cylindrical Gaussian surface as shown in figure.
Since the field is everywhere radial, flux through the two ends of the cylindrical Gaussian surface
is zero.
At the cylindrical part of the surface $\overrightarrow{\mathrm{E}}$ is normal to the surface at every point and its magnitude
is constant since it depends only on $r .$
The surface area of the curved part is $2 \pi r l$, where $l$ is the length of the cylinder.
Flux through the Gaussian surface,
$=$ flux through the curved cylindrical part of the surface
$=E \times 2 \pi r l$
Let $\sigma$ be the uniform surface charge density of two infinite thin plane sheets shown in figure. Then the electric fields in three different region $E_{ I }, E_{ II }$ and $E_{III}$ are
A non-conducting solid sphere of radius $R$ is uniformly charged. The magnitude of the electric field due to the sphere at a distance $r$ from its centre
The electric field $E$ is measured at a point $P (0,0, d )$ generated due to various charge distributions and the dependence of $E$ on $d$ is found to be different for different charge distributions. List-$I$ contains different relations between $E$ and $d$. List-$II$ describes different electric charge distributions, along with their locations. Match the functions in List-$I$ with the related charge distributions in List-$II$.
List-$I$ | List-$II$ |
$E$ is independent of $d$ | A point charge $Q$ at the origin |
$E \propto \frac{1}{d}$ | A small dipole with point charges $Q$ at $(0,0, l)$ and $- Q$ at $(0,0,-l)$. Take $2 l \ll d$. |
$E \propto \frac{1}{d^2}$ | An infinite line charge coincident with the x-axis, with uniform linear charge density $\lambda$ |
$E \propto \frac{1}{d^3}$ | Two infinite wires carrying uniform linear charge density parallel to the $x$-axis. The one along ( $y=0$, $z =l$ ) has a charge density $+\lambda$ and the one along $( y =0, z =-l)$ has a charge density $-\lambda$. Take $2 l \ll d$ |
plane with uniform surface charge density |
Two fixed, identical conducting plates $(\alpha $ and $\beta )$, each of surface area $S$ are charged to $-\mathrm{Q}$ and $\mathrm{q}$, respectively, where $Q{\rm{ }}\, > \,{\rm{ }}q{\rm{ }}\, > \,{\rm{ }}0.$ A third identical plate $(\gamma )$, free to move is located on the other side of the plate with charge $q$ at a distance $d$ as per figure. The third plate is released and collides with the plate $\beta $. Assume the collision is elastic and the time of collision is sufficient to redistribute charge amongst $\beta $ and $\gamma $.
$(a)$ Find the electric field acting on the plate $\gamma $ before collision.
$(b)$ Find the charges on $\beta $ and $\gamma $ after the collision.
$(c)$ Find the velocity of the plate $\gamma $ after the collision and at a distance $d$ from the plate $\beta $.
A sphere of radius $R$ has a uniform distribution of electric charge in its volume. At a distance $x$ from its centre, for $x < R$, the electric field is directly proportional to