Number of points on the ellipse $\frac{{{x^2}}}{{50}} + \frac{{{y^2}}}{{20}} = 1$ from which pair of perpendicular tangents are drawn to the ellips $\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{{9}} = 1$
$0$
$2$
$1$
$4$
Let $E$ be the ellipse $\frac{x^2}{16}+\frac{y^2}{9}=1$. For any three distinct points $P, Q$ and $Q^{\prime}$ on $E$, let $M(P, Q)$ be the mid-point of the line segment joining $P$ and $Q$, and $M \left( P , Q ^{\prime}\right)$ be the mid-point of the line segment joining $P$ and $Q ^{\prime}$. Then the maximum possible value of the distance between $M ( P , Q )$ and $M \left( P , Q ^{\prime}\right)$, as $P, Q$ and $Q^{\prime}$ vary on $E$, is. . . . .
Eccentricity of the ellipse $4{x^2} + {y^2} - 8x + 2y + 1 = 0$ is
A man running round a race-course notes that the sum of the distance of two flag-posts from him is always $10\ metres$ and the distance between the flag-posts is $8\ metres$. The area of the path he encloses in square metres is
The line $y=x+1$ meets the ellipse $\frac{x^{2}}{4}+\frac{y^{2}}{2}=1$ at two points $P$ and $Q$. If $r$ is the radius of the circle with $PQ$ as diameter then $(3 r )^{2}$ is equal to
The equations of the directrices of the ellipse $16{x^2} + 25{y^2} = 400$ are