Match the columns
Column $-I$ $R/H_{max}$ |
Column $-II$ Angle of projection $\theta $ |
$A.$ $1$ | $1.$ ${60^o}$ |
$B.$ $4$ | $2.$ ${30^o}$ |
$C.$ $4\sqrt 3$ | $3.$ ${45^o}$ |
$D.$ $\frac {4}{\sqrt 3}$ | $4.$ $tan^{-1}\,4\,=\,{76^o}$ |
$A-1\,\,B-2\,\,C-3\,\,D-4$
$A-4\,\,B-3\,\,C-2\,\,D-1$
$A-2\,\,B-1\,\,C-4\,\,D-3$
$A-3\,\,B-4\,\,C-1\,\,D-2$
A stone is projected from ground at $t = 0$. At the time of projection horizontal and vertical component of velocity are $10\, m/s$ and $20\, m/s$ respectively. Then time at which tangential and normal acceleration magnitude will be equal $(g = 10\, m/s^2)$ [neglect air friction] ......... $\sec$
A projectile is thrown with a velocity of $10\,m / s$ at an angle of $60^{\circ}$ with horizontal. The interval between the moments when speed is $\sqrt{5 g}\,m / s$ is $..........\,s$ $\left(g=10\,m / s ^2\right)$.
A body is projected horizontally from the top of a tower with initial velocity $18\,m s^{-1}$. It hits the ground at angle $45^o$. What is the vertical component of velocity when it strikes the ground ......... $ms^{-1}$
A heavy particle is projected from a point on the horizontal at an angle $60^o$ with the horizontal with a speed of $10\ m/s$ . Then the radius of the curvature of its path at the instant of crossing the same horizontal will be ......... $m$
A projectile is thrown with speed $40 \,ms ^{-1}$ at angle $\theta$ from horizontal. It is found that projectile is at same height at $1 \,s$ and $3 \,s$. What is the angle of projection?