Match the columns

  Column $-I$
    $R/H_{max}$
  Column $-II$
  Angle of projection $\theta $
   $A.$ $1$    $1.$ ${60^o}$
   $B.$ $4$    $2.$ ${30^o}$
   $C.$ $4\sqrt 3$    $3.$ ${45^o}$
   $D.$ $\frac {4}{\sqrt 3}$    $4.$ $tan^{-1}\,4\,=\,{76^o}$

 

  • A

    $A-1\,\,B-2\,\,C-3\,\,D-4$

  • B

    $A-4\,\,B-3\,\,C-2\,\,D-1$

  • C

    $A-2\,\,B-1\,\,C-4\,\,D-3$

  • D

    $A-3\,\,B-4\,\,C-1\,\,D-2$

Similar Questions

A stone is projected from ground at $t = 0$. At the time of projection horizontal and vertical component of velocity are $10\, m/s$ and $20\, m/s$ respectively. Then time at which tangential and normal acceleration magnitude will be equal $(g = 10\, m/s^2)$ [neglect air friction]    ......... $\sec$

A projectile is thrown with a velocity of $10\,m / s$ at an angle of $60^{\circ}$ with horizontal. The interval between the moments when speed is $\sqrt{5 g}\,m / s$ is $..........\,s$ $\left(g=10\,m / s ^2\right)$.

A body is projected horizontally from the top of a tower with initial velocity $18\,m s^{-1}$. It hits the ground at angle $45^o$. What is the vertical component of velocity when it strikes the ground ......... $ms^{-1}$

A heavy particle is projected from a point on the horizontal at an angle $60^o$ with the horizontal with a speed of $10\ m/s$ . Then the radius of the curvature of its path at the instant of crossing the same horizontal will be    ......... $m$

A projectile is thrown with speed $40 \,ms ^{-1}$ at angle $\theta$ from horizontal. It is found that projectile is at same height at $1 \,s$ and $3 \,s$. What is the angle of projection?