Let $\frac{1}{{{x_1}}},\frac{1}{{{x_2}}},\frac{1}{{{x_3}}},.....,$  $({x_i} \ne \,0\,for\,\,i\, = 1,2,....,n)$  be in $A.P.$  such that  $x_1 = 4$ and $x_{21} = 20.$ If $n$  is the least positive integer for which $x_n > 50,$  then $\sum\limits_{i = 1}^n {\left( {\frac{1}{{{x_i}}}} \right)} $  is equal to.

  • [JEE MAIN 2018]
  • A

    $3$

  • B

    $\frac {13}{8}$

  • C

    $\frac {13}{4}$

  • D

    $\frac {1}{8}$

Similar Questions

If $\frac{{{a^{n + 1}} + {b^{n + 1}}}}{{{a^n} + {b^n}}}$ be the $A.M.$ of $a$ and $b$, then $n=$

The common difference of the $A.P.$ $b_{1}, b_{2}, \ldots,$ $b_{ m }$ is $2$ more than the common difference of $A.P.$ $a _{1}, a _{2}, \ldots, a _{ n } .$ If $a _{40}=-159, a _{100}=-399$ and $b _{100}= a _{70},$ then $b _{1}$ is equal to

  • [JEE MAIN 2020]

If the first term of an $A.P. $ be $10$, last term is $50$ and the sum of all the terms is $300$, then the number of terms are

Which of the following sequence is an arithmetic sequence

If $\log _{10} 2, \log _{10} (2^x + 1), \log _{10} (2^x + 3)$ are in $A.P.,$ then :-