If the third term in the binomial expansion of ${\left( {1 + {x^{{{\log }_2}\,x}}} \right)^5}$ equals $2560$, then a possible value of $x$ is
$\frac{1}{4}$
$4\sqrt 2 $
$\frac{1}{8}$
$2\sqrt 2 $
If $a^3 + b^6 = 2$, then the maximum value of the term independent of $x$ in the expansion of $(ax^{\frac{1}{3}}+bx^{\frac{-1}{6}})^9$ is, where $(a > 0, b > 0)$
Find a positive value of $m$ for which the coefficient of $x^{2}$ in the expansion $(1+x)^{m}$ is $6$
If the term independent of $x$ in the exapansion of $\left(\frac{3}{2} x^{2}-\frac{1}{3 x}\right)^{9}$ is $k,$ then $18 k$ is equal to
In the expansion of ${\left( {\frac{x}{2} - \frac{3}{{{x^2}}}} \right)^{10}}$, the coefficient of ${x^4}$is
If the expansion of ${\left( {{y^2} + \frac{c}{y}} \right)^5}$, the coefficient of $y$ will be