જો સમીકરણ સંહિત   $2 x+3 y-z=5$  ;  $x+\alpha y+3 z=-4$  ;  $3 x-y+\beta z=7$ ને અસંખ્ય  ઉકેલો હોય, તો  $13 \alpha \beta$=____________. 

  • [JEE MAIN 2024]
  • A

    $1110$

  • B

    $1120$

  • C

    $1210$

  • D

    $1220$

Similar Questions

સમીકરણની સંહતિ $x + ky - z = 0,3x - ky - z = 0$ અને $x - 3y + z = 0$ ને શૂન્યતર ઉકેલ હોય, તો $k$ ની કિમત મેળવો.

  • [IIT 1988]

વિધાન $1$ :$3$  કક્ષાવાળા વિંસમિત શ્રેણિકનો નિશ્રાયક શૂન્ય હોય છે.

વિધાન $2$: કોઇપણ શ્રેણિક $A$  માટે $\det \left( {{A^T}} \right) = {\rm{det}}\left( A \right)$ અને $\det \left( { - A} \right) = - {\rm{det}}\left( A \right)$ જયાં $\det \left( A \right) = A$ નો નિશ્રાયક.

  • [AIEEE 2011]

જો ${\left| {\,\begin{array}{*{20}{c}}4&1\\2&1\end{array}\,} \right|^2} = \left| {\,\begin{array}{*{20}{c}}3&2\\1&x\end{array}\,} \right| - \left| {\,\begin{array}{*{20}{c}}x&3\\{ - 2}&1\end{array}\,} \right|$ તો $x =$

$\left| {\,\begin{array}{*{20}{c}}{{{({a^x} + {a^{ - x}})}^2}}&{{{({a^x} - {a^{ - x}})}^2}}&1\\{{{({b^x} + {b^{ - x}})}^2}}&{{{({b^x} - {b^{ - x}})}^2}}&1\\{{{({c^x} + {c^{ - x}})}^2}}&{{{({c^x} - {c^{ - x}})}^2}}&1\end{array}\,} \right| = $

$\left| {{\rm{ }}\begin{array}{*{20}{c}}1&2&3\\3&5&7\\8&{14}&{20}\end{array}} \right| = . . . $