If ${\sum\limits_{i = 1}^{20} {\left( {\frac{{{}^{20}{C_{i - 1}}}}{{{}^{20}{C_i} + {}^{20}{C_{i - 1}}}}} \right)} ^3}\, = \frac{k}{{21}}$, then $k$ equals

  • [JEE MAIN 2019]
  • A

    $400$

  • B

    $50$

  • C

    $200$

  • D

    $100$

Similar Questions

Let $[ x ]$ denote greatest integer less than or equal to $x .$ If for $n \in N ,\left(1-x+x^{3}\right)^{n}=\sum_{j=0}^{3 n} a_{j} x^{j}$, then $\sum_{j=0}^{\left[\frac{3 n}{2}\right]} a_{2 j}+4 \sum_{j=0}^{\left[\frac{3 n-1}{2}\right]} a_{2 j+1}$ is equal to

  • [JEE MAIN 2021]

In the expansion of

$(2x + 1).(2x + 5) . (2x + 9) . (2x + 13)...(2x + 49),$ find the coefficient of $x^{12}$ is :-

The sum of last eight consecutive coefficients in the expansion of $(1+x)^{15}$ is

The sum of the series $\sum\limits_{r = 0}^n {{{( - 1)}^r}\,{\,^n}{C_r}\left( {\frac{1}{{{2^r}}} + \frac{{{3^r}}}{{{2^{2r}}}} + \frac{{{7^r}}}{{{2^{3r}}}} + \frac{{{{15}^r}}}{{{2^{4r}}}} + .....m\,{\rm{terms}}} \right)} $ is

If $\sum_{ k =1}^{10} K ^{2}\left(10_{ C _{ K }}\right)^{2}=22000 L$, then $L$ is equal to $.....$

  • [JEE MAIN 2022]