For what type of charge distribution, electric field can be obtained by using Coulomb’s law and superposition principle ?

Similar Questions

Two charges $\pm 10\; \mu C$ are placed $5.0\; mm$ apart. Determine the electric field at $(a)$ a point $P$ on the axis of the dipole $15 cm$ away from its centre $O$ on the side of the positive charge, as shown in Figure $(a),$ and $(b)$ a point $Q , 15\; cm$ away from $O$ on a line passing through $O$ and normal to the axis of the dipole, as shown in Figure.

Four charges are placed on corners of a square as shown in figure having side of $5\,cm$. If $Q$ is one microcoulomb, then electric field intensity at centre will be

Figures below show regular hexagons, with charges at the vertices. In which of the following cases the electric field at the centre is not zero

The distance between a proton and electron both having a charge $1.6 \times {10^{ - 19}}\,coulomb$, of a hydrogen atom is ${10^{ - 10}}\,metre$. The value of intensity of electric field produced on electron due to proton will be

A uniformly charged rod of length $4\,m$ and linear charge density $\lambda  = 30\,\mu C/m$ is placed as shown in figure. Calculate the $x-$ component of electric field at point $P$.