For the frequency distribution :
Variate $( x )$ | $x _{1}$ | $x _{1}$ | $x _{3} \ldots \ldots x _{15}$ |
Frequency $(f)$ | $f _{1}$ | $f _{1}$ | $f _{3} \ldots f _{15}$ |
where $0< x _{1}< x _{2}< x _{3}<\ldots .< x _{15}=10$ and
$\sum \limits_{i=1}^{15} f_{i}>0,$ the standard deviation cannot be
$2$
$1$
$4$
$6$
The variance of first $50$ even natural numbers is
The mean and variance of $20$ observations are found to be $10$ and $4,$ respectively. On rechecking, it was found that an observation $9$ was incorrect and the correct observation was $11$. Then the correct variance is
If $\sum \limits_{i=1}^{n}\left(x_{i}-a\right)=n$ and $\sum \limits_{i=1}^{n}\left(x_{i}-a\right)^{2}=n a,(n, a>1)$ then the standard deviation of $n$ observations $x _{1}, x _{2}, \ldots, x _{ n }$ is
Let the mean and variance of $8$ numbers $x , y , 10$, $12,6,12,4,8$, be $9$ and $9.25$ respectively. If $x > y$, then $3 x-2 y$ is equal to $...........$.
Suppose a class has $7$ students. The average marks of these students in the mathematics examination is $62$, and their variance is $20$ . A student fails in the examination if $he/she$ gets less than $50$ marks, then in worst case, the number of students can fail is