For a certain organ pipe three successive resonance frequencies are observed at $425\, Hz,595 \,Hz$ and $765 \,Hz$ respectively. If the speed of sound in air is $340 \,m/s$,  then the length of the pipe is ..... $m$

  • A

    $2$

  • B

    $0.4$

  • C

    $1$

  • D

    $0.2$

Similar Questions

Two tuning forks having frequency $256\, Hz \,(A)$ and $262\, Hz \,(B)$ tuning fork. $A$ produces some beats per second with unknown tuning fork, same unknown tuning fork  produce double beats per second from $B$ tuning fork then the frequency of unknown tuning fork is :- ............ $\mathrm{Hz}$

A sufficiently long closed organ pipe has a small hole at its bottom. Initially, the pipe is empty. Water is poured into the pipe at a constant rate. The fundamental frequency of the air column in the pipe

The amplitude of a wave disturbance propagating in the positive $X-$ direction is given by $y = 1/(1 + x^2)$ at time $t = 0$ and by $y = 1/[1 + (x -1)^2]$ at $t = 2$ seconds, where $x$ and $y$ are in metres. The shape of the wave disturbance does not change during the propagation. The velocity of the wave is ..... $ms^{-1}$

A train approaching a railway plateform with a speed of  $20\,\,m\,s^{-1}$ starts blowing the whistle speed of sound in air is $340\,\,ms^{-1}.$ If frequency of the emitted sound from the whistle is  $640\,\,Hz,$  the frequency of sound as heard by person standing on the platform is .... $Hz$

The equation of transverse wave in stretched string is $y = 5\,\sin \,2\pi \left[ {\frac{t}{{0.04}} - \frac{x}{{50}}} \right]$ Where distances are in cm and time in second. The wavelength of wave is .... $cm$