Find the zero of the polynomial : $p(x)=c x+d, \,c \neq 0, \,c,\,d$ are real numbers.
$-\frac{ d }{ c }$
$d$
$\frac{ d }{ c }$
$-\frac{ c }{ d }$
Write the coefficients of $x^2$ in each of the following :
$(i)$ $2+x^{2}+x $
$(ii)$ $2-x^{2}+x^{3}$
Verify whether the following are zeroes of the polynomial, indicated against them.
$p(x)=5 x-\pi, \,\,x=\frac{4}{5}$
Factorise $: 8 x^{3}+y^{3}+27 z^{3}-18 x y z$
Factorise : $x^{3}+13 x^{2}+32 x+20$
Find the degree of the polynomials given : $2-y^{2}-y^{3}+2 y^{8}$