Find the cocfficient of $x^{5}$ in $(x+3)^{8}$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

It is known that $(r+1)^{\text {th }}$ term, $\left(T_{r+1}\right),$ in the binomial expansion of $(a+b)^{n}$ is given by

${T_{r + 1}} = {\,^n}{C_r}{a^{n - r}}{b^r}$

Assuming that $x^{5}$ occurs in the $(r+1)^{t h}$ term of the expansion $(x+3)^{8},$ we obtain

${T_{r + 1}} = {\,^8}{C_r}{(x)^{8 - r}}{(3)^r}$

Comparing the indices of $x$ in $x^{5}$ in $T_{r+1},$

We obtain $r=3$

Thus, the coefficient of $x^{5}$ is ${\,^8}{C_3}{(3)^3} = \frac{{8!}}{{3!5!}} \times {3^3} = \frac{{8 \cdot 7 \cdot 6 \cdot 5!}}{{3 \cdot 2 \cdot 5!}} \cdot {3^3} = 1512$

Similar Questions

The term independent of $x$ in ${\left( {\sqrt x - \frac{2}{x}} \right)^{18}}$ is

Find the value of $\left(a^{2}+\sqrt{a^{2}-1}\right)^{4}+\left(a^{2}-\sqrt{a^{2}-1}\right)^{4}$

The coefficient of middle term in the expansion of ${(1 + x)^{10}}$ is

If the number of integral terms in the expansion of $\left(3^{\frac{1}{2}}+5^{\frac{1}{8}}\right)^{\text {n }}$ is exactly $33,$ then the least value of $n$ is

  • [JEE MAIN 2020]

The expression $[x + (x^3-1)^{1/2}]^5 + [x - (x^3-1)^{1/2}]^5$ is a polynomial of degree :