Factorise each of the following : $27 p^{3}-\frac{1}{216}-\frac{9}{2} p^{2}+\frac{1}{4} p$
$27 p^{3}-\frac{1}{216}-\frac{9}{2} p^{2}+\frac{1}{4} p$ $=(3 p )^{3}-\left(\frac{1}{6}\right)^{3}-3(3 p )\left(\frac{1}{6}\right)\left[3 p -\frac{1}{6}\right]$
$=\left[3 p -\frac{1}{6}\right]^{3}$ [Using Identity $VII$]
$=\left(3 p -\frac{1}{6}\right)\left(3 p -\frac{1}{6}\right)\left(3 p -\frac{1}{6}\right)$
Factorise of the following : $64 m^{3}-343 n^{3}$
Expand $(4a -2b -3c)^2.$
Expand each of the following, using suitable identities : $(2 x-y+z)^{2}$
Factorise : $3 x^{2}-x-4$
Verify whether the following are zeroes of the polynomial, indicated against them.
$p(x)=5 x-\pi, \,\,x=\frac{4}{5}$