Factorise : $\frac{25}{4} x^{2}-\frac{y^{2}}{9}$
we have $\frac{25}{4} x^{2}-\frac{y^{2}}{9}=\left(\frac{5}{2} x\right)^{2}-\left(\frac{y}{3}\right)^{2}$
Now comparing it with Identity $III$, we get
$\frac{25}{4} x^{2}-\frac{y^{2}}{9}=\left(\frac{5}{2} x\right)^{2}-\left(\frac{y}{3}\right)^{2}$
$=\left(\frac{5}{2} x+\frac{y}{3}\right)\left(\frac{5}{2} x-\frac{y}{3}\right)$
Divide the polynomial $3 x^{4}-4 x^{3}-3 x-1$ by $x-1$.
Use suitable identities to find the products : $(x+4)(x+10)$
Factorise the following using appropriate identities : $9 x^{2}+6 x y+y^{2}$
Factorise $4 x^{2}+y^{2}+z^{2}-4 x y-2 y z+4 x z$.
Factorise of the following : $27-125 a^{3}-135 a+225 a^{2}$