Factorise : $x^{3}-2 x^{2}-x+2$
$x^{3}-2 x^{2}-x+2$
Rearranging the terms, we have
$x^{3}-2 x^{2}-x+2=x^{3}-x-2 x^{2}+2=x\left(x^{2}-1\right)-2\left(x^{2}-1\right)$
$=\left(x^{2}-1\right)(x-2)$
$=\left[(x)^{2}-(1)^{2}\right][x-2]$
$=(x-1)(x+1)(x-2)$
$\left[\because a ^{2}- b ^{2}=( a + b )( a - b )\right]$
Thus, $x^{3}-2 x^{2}-x+2=(x-1)(x+1)(x-2)$
Which of the following expressions are polynomials in one variable and which are not ? State reasons for your answer. $x^{10}+y^{3}+t^{50}$
Factorise of the following : $64 m^{3}-343 n^{3}$
Without actually calculating the cubes, find the value of each of the following : $(28)^{3}+(-15)^{3}+(-13)^{3}$
Verify : $x^{3}-y^{3}=(x-y)\left(x^{2}+x y+y^{2}\right)$
Write the coefficients of $x^2$ in each of the following :
$(i)$ $2+x^{2}+x $
$(ii)$ $2-x^{2}+x^{3}$