Factorise : $x^{3}-2 x^{2}-x+2$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$x^{3}-2 x^{2}-x+2$

Rearranging the terms, we have

$x^{3}-2 x^{2}-x+2=x^{3}-x-2 x^{2}+2=x\left(x^{2}-1\right)-2\left(x^{2}-1\right)$

$=\left(x^{2}-1\right)(x-2)$

$=\left[(x)^{2}-(1)^{2}\right][x-2]$

$=(x-1)(x+1)(x-2)$

$\left[\because a ^{2}- b ^{2}=( a + b )( a - b )\right]$

Thus,  $x^{3}-2 x^{2}-x+2=(x-1)(x+1)(x-2)$

Similar Questions

Which of the following expressions are polynomials in one variable and which are not ? State reasons for your answer.  $x^{10}+y^{3}+t^{50}$

Factorise of the following : $64 m^{3}-343 n^{3}$

Without actually calculating the cubes, find the value of each of the following : $(28)^{3}+(-15)^{3}+(-13)^{3}$

Verify :  $x^{3}-y^{3}=(x-y)\left(x^{2}+x y+y^{2}\right)$

Write the coefficients of $x^2$ in each of the following :

$(i)$ $2+x^{2}+x $

$(ii)$ $2-x^{2}+x^{3}$