Explain resolution of vector in two dimension. Explain resolution of vector in its perpendicular components.
$O$-$XY$ two dimensional Cartesian coordinate system is represented in figure.
Position vector of point $\mathrm{P}$ is $\overrightarrow{\mathrm{A}}$.
By drawing projection from $P$ to $X$-axis, $OM$ is obtained $\overrightarrow{O M}=\vec{A}_{x}=\mathrm{A}_{x} \hat{i}=\mathrm{X}$-component of $\overrightarrow{\mathrm{A}}$
By drawing projection from $P$ to $Y$-axis, $ON$ is obtained $\overrightarrow{O N}=\overrightarrow{A_{y}}=A_{x} \hat{j}=Y$-component of $\vec{A}$. where, $\mathrm{A}_{x}$ and $\mathrm{A}_{y}$ are real numbers.
From figure,
$\overrightarrow{\mathrm{A}}=\overrightarrow{\mathrm{A}_{x}}+\overrightarrow{\mathrm{A}_{y}}$
$\overrightarrow{\mathrm{A}}=\mathrm{A}_{x} \hat{i}+\mathrm{A}_{y} \hat{j}$
Suppose, $\vec{A}$ makes angle ' $\theta$ ' with $X$-axis.
For $\Delta \mathrm{OMP}$,
$\cos \theta=\frac{\mathrm{A}_{x}}{\mathrm{~A}}$
$\therefore \mathrm{A}_{x}=\mathrm{A} \cos \theta$
$\sin \theta=\frac{\mathrm{A}_{y}}{\mathrm{~A}}$
$\therefore \mathrm{A}_{y}=\mathrm{A} \sin \theta$
From equation $(3)$ and $(4)$, it can be said that components can be positive, negative or zero depending upon $\theta$.
Vectors can be represented in a plane by two ways:
$(i)$ By its magnitude and direction.
$(ii)$ By its components ( $x$ and $y$ components)
$O$-$XY$ two dimensional Cartesian coordinate system is represented in figure.
Position vector of point $\mathrm{P}$ is $\overrightarrow{\mathrm{A}}$.
By drawing projection from $P$ to $X$-axis, $OM $ is obtained $\overrightarrow{O M}=\vec{A}_{x}=\mathrm{A}_{x} \hat{i}=\mathrm{X}$-component of $\overrightarrow{\mathrm{A}}$
By drawing projection from $P$ to $Y$-axis, $ON$ is obtained $\overrightarrow{O N}=\vec{A}_{y}=\mathrm{A}_{x} \hat{j}=\mathrm{Y}$-component of $\vec{A}$
where, $\mathrm{A}_{x}$ and $\mathrm{A}_{y}$ are real numbers.
From figure,
$\overrightarrow{\mathrm{A}}=\overrightarrow{\mathrm{A}_{x}}+\overrightarrow{\mathrm{A}_{y}} $
$\overrightarrow{\mathrm{A}}=\mathrm{A}_{x} \hat{i}+\mathrm{A}_{y} \hat{j}$
Suppose, $\overrightarrow{\mathrm{A}}$ makes angle ' $\theta$ ' with $X$-axis.
For $\Delta \mathrm{OMP}$,
$\cos \theta=\frac{\mathrm{A}_{x}}{\mathrm{~A}}$
$\therefore \mathrm{A}_{x}=\mathrm{A} \cos \theta$
$\sin \theta=\frac{\mathrm{A}_{y}}{\mathrm{~A}}$
$\therefore \mathrm{A}_{y}=\mathrm{A} \sin \theta$
From equation $( 3 )$ and $(4)$, it can be said that components can be positive, negative or zero depending upon $\theta$.
Vectors can be represented in a plane by two ways :
$(i)$ By its magnitude and direction.
$(ii)$ By its components ( $x$ and $y$ components)
.
A particle starting from the origin $(0,0)$ moves in a straight line in the $(x, y)$ plane. Its coordinates at a later time are $(\sqrt 3,3)$ . The path of the particle makes with the $x -$ axis an angle of ....... $^o$
The magnitude of pairs of displacement vectors are given. Which pair of displacement vectors cannot be added to give a resultant vector of magnitude $13\, cm$?
The projection of a vector $\vec r\, = \,3\hat i\, + \,\hat j\, + \,2\hat k$ on the $xy$ plane has magnitude
A displacement vector of magnitude $4$ makes an angle $30^{\circ}$ with the $x$-axis. Its rectangular components in $x-y$ plane are .........