Expand each of the following, using suitable identities : $(3 a-7 b-c)^{2}$
$(3 a-7 b-c)^{2}$
Using $(x+y+z)^{2}=x^{2}+y^{2}+z^{2}+2 x y+2 y z+2 z x,$ we have
$(3 a-7 b-c)^{2} =(3 a)^{2}+(-7 b)^{2}+(-c)^{2}+2(3 a)(-7 b)+2(-7 b)(-c)+2(-c)(3 a) $
$=9 a^{2}+49 b^{2}+c^{2}+(-42 a b)+(14 b c)+(-6 c a)$
$=9 a^{2}+49 b^{2}+c^{2}-42 a b+14 b c-6 c a $
Verify whether the following are zeroes of the polynomial, indicated against them.
$p(x)=x^{2}, \,x=0$
Expand $(4a -2b -3c)^2.$
Factorise : $3 x^{2}-x-4$
Factorise of the following : $64 a^{3}-27 b^{3}-144 a^{2} b+108 a b^{2}$
Factorise : $2 y^{3}+y^{2}-2 y-1$