Describe the sample space for the indicated experiment : A die is thrown two times.
When a die is thrown, the possible outcomes are $1,\,2,\,3,\,4,\,5,$ or $6$.
When a die is thrown two times, the sample is given by $S =\{(x, y): x , y =1,2,3,4,5,6\}$
The number of elements in this sample space is $6 \times 6=36,$ while the sample space is given by :
$S=\{(1,1),\,(1,2),\,(1,3)$, $( 1,4),\,(1,6),\,(2,1)$, $(2,2),\,(2,3),\,(2,4)$, $(2,5),\,(2,6),\,(3,1),$ $(3,2),\,(3,3),\,(3,4)$, $(3,5),$ $(3,6),\,(4,1)\,,(4,2)$, $(4,3),\,(4,4),\,(4,5),\,(4,6)$, $(5,1)\,,(5,2),$ $(5,3)\,,(5,4)\,,(5,5)$, $(5,6),\,(6,1),\,(6,2)$, $(6,3)$, $(6,4),\,(6,5),\,(6,6)\}$
A coin is tossed and a dice is rolled. The probability that the coin shows the head and the dice shows $6$ is
A number is chosen at random from the set $\{1,2,3, \ldots, 2000\}$. Let $p$ be the probability that the chosen number is a multiple of $3$ or a multiple of $7$ . Then the value of $500\ p$ is. . . . . .
$A$ and $B$ are two independent events such that $P(A) = \frac{1}{2}$ and $P(B) = \frac{1}{3}$. Then $P$ (neither $A$ nor $B$) is equal to
Find the probability that the two digit number formed by digits $1, 2, 3, 4, 5$ is divisible by $4$ (while repetition of digit is allowed)
If $\frac{2}{11}$ is the probability of an event, what is the probability of the event $'$ not $A ^{\prime}$.