Consider

Statement $-1 :$$\left( {p \wedge \sim q} \right) \wedge \left( { \sim p \wedge q} \right)$ is a fallacy.

Statement $-2 :$$(p \rightarrow q) \leftrightarrow ( \sim q \rightarrow   \sim  p )$  is a tautology.

  • [AIEEE 2009]
  • [JEE MAIN 2013]
  • A

    Statement $-1$ is false, Statement $-2$ is true

  • B

    Statement $-1$ is true, Statement $-2$ is false

  • C

    Statement $-1$ is true, Statement $-2$ is true; Statement $-2$ is a correct explanation for Statement $-1$

  • D

    Statement $-1$ is true, Statement $-2$ is true; Statement $-2$ is not a correct explanation for Statement $-1$

Similar Questions

If $p , q$ and $r$ are three propositions, then which of the following combination of truth values of $p , q$ and $r$ makes the logical expression $\{(p \vee q) \wedge((\sim p) \vee r)\} \rightarrow((\sim q) \vee r)$ false ?

  • [JEE MAIN 2023]

Consider the following three statements :

$(A)$ If $3+3=7$ then $4+3=8$.

$(B)$ If $5+3=8$ then earth is flat.

$(C)$ If both $(A)$ and $(B)$ are true then $5+6=17$. Then, which of the following statements is correct?

  • [JEE MAIN 2021]

Negation of statement "If I will go to college, then I will be an engineer" is -

Consider the following statements:

$P :$ Ramu is intelligent

$Q $: Ramu is rich

$R:$ Ramu is not honest

The negation of the statement "Ramu is intelligent and honest if and only if Ramu is not rich" can be expressed as.

  • [JEE MAIN 2022]

Statement $-1$ : $ \sim \left( {p \leftrightarrow \, \sim q} \right)$ is equivalent to $p \leftrightarrow q$

Statement $-2$ : $ \sim \left( {p \leftrightarrow \, \sim q} \right)$ is a tautology.