Consider the following data for the given reaction $2 \mathrm{HI}_{(\mathrm{g})} \rightarrow \mathrm{H}_{2(\mathrm{~g})}+\mathrm{I}_{2(\mathrm{~g})}$ . The order of the reaction is................
$1$ | $2$ | $3$ | |
$\mathrm{HI}\left(\mathrm{mol} \mathrm{L}^{-1}\right)$ | $0.005$ | $0.01$ | $0.02$ |
Rate $\left(\mathrm{mol} \mathrm{L}^{-1} \mathrm{~s}-1\right)$ | $7.5 \times 10^{-4}$ | $3.0 \times 10^{-3}$ | $1.2 \times 10^{-2}$ |
$1$
$2$
$3$
$4$
The conversion of molecules $X$ to $Y$ follows second order kinetics. If concentration of $X$ is increased to three times how will it affect the rate of formation of $Y ?$
The reaction $2{N_2}{O_5}$ $\rightleftharpoons$ $2N{O_2} + {O_2}$ follows first order kinetics. Hence, the molecularity of the reaction is
Which of the following rate laws has an overall order of $0.5$ for reaction involving substances $x$, $y$ and $z$
Reaction rate between two substance $A$ and $B$ is expressed as following $:$ rate $= k[A ]^n[B]^m$ If the concentration of $A$ is doubled and concentration of $B$ is made half of initial concentration, the ratio of the new rate to the earlier rate will be
For the non-stoichiometric reaction $2A + B \to C + D,$ the following kinetic data were obtained in three separate experiments, all at $298\,K$.
Initial Conc. $(A)$ |
Initial Conc. $(B)$ |
Initial rate of |
$0.1\,M$ | $0.1\,M$ | $1.2 \times 10^{-3}$ |
$0.1\,M$ | $0.2\,M$ | $1.2 \times 10^{-3}$ |
$0.2\,M$ | $0.1\,M$ | $2.4 \times 10^{-3}$ |
For the reaction the rate of formation of $C$ will be