Consider the equation ${x^2} + \alpha x + \beta  = 0$ having roots $\alpha ,\beta $ such that $\alpha  \ne \beta $ .Also consider the inequality $\left| {\left| {y - \beta } \right| - \alpha } \right| < \alpha $ ,then

  • A

    inequality is satisfied by exactly two integral values of $y$

  • B

    inequality is satisfied by all values of $y \in  (-4, 2)$

  • C

    Roots of the equation are of same sign

  • D

    ${x^2} + \alpha x + \beta  > 0\,\forall \,x \in \,\left[ { - 1,0} \right]$

Similar Questions

Exact set of values of $a$ for which ${x^3}(x + 1) = 2(x + a)(x + 2a)$ is having four real solutions is

The equation $e^{4 x}+8 e^{3 x}+13 e^{2 x}-8 e^x+1=0, x \in R$ has:

  • [JEE MAIN 2023]

The sum of all the roots of the equation $\left|x^2-8 x+15\right|-2 x+7=0$ is:

  • [JEE MAIN 2023]

Let $\alpha, \beta(\alpha>\beta)$ be the roots of the quadratic equation $x ^{2}- x -4=0$. If $P _{ a }=\alpha^{ n }-\beta^{ n }, n \in N$, then $\frac{ P _{15} P _{16}- P _{14} P _{16}- P _{15}^{2}+ P _{14} P _{15}}{ P _{13} P _{14}}$ is equal to$......$

  • [JEE MAIN 2022]

If the roots of the equation $8{x^3} - 14{x^2} + 7x - 1 = 0$ are in $G.P.$, then the roots are