Consider a sequence whose sum of first $n$ -terms is given by $S_n = 4n^2 + 6n, n \in N$, then $T_{15}$ of this sequence is -

  • A

    $118$

  • B

    $120$

  • C

    $122$

  • D

    $86$

Similar Questions

Let $\frac{1}{{{x_1}}},\frac{1}{{{x_2}}},\frac{1}{{{x_3}}},.....,$  $({x_i} \ne \,0\,for\,\,i\, = 1,2,....,n)$  be in $A.P.$  such that  $x_1 = 4$ and $x_{21} = 20.$ If $n$  is the least positive integer for which $x_n > 50,$  then $\sum\limits_{i = 1}^n {\left( {\frac{1}{{{x_i}}}} \right)} $  is equal to.

  • [JEE MAIN 2018]

If the sum of $n$ terms of an $A.P.$ is $3 n^{2}+5 n$ and its $m^{\text {th }}$ term is $164,$ find the value of $m$

Jairam purchased a house in Rs. $15000$ and paid Rs. $5000$ at once. Rest money he promised to pay in annual installment of Rs. $1000$ with $10\%$ per annum interest. How much money is to be paid by Jairam $\mathrm{Rs.}$ ...................

If all interior angle of quadrilateral are in $A.P.$ If common difference is $10^o$, then find smallest angle ? .............. $^o$

If $(b+c),(c+a),(a+b)$ are in $H.P$ , then $a^2,b^2,c^2$ are in.......