A man $X$ has $7$ friends, $4$ of them are ladies and $3$ are men. His wife $Y$ also has $7$ friends, $3$ of them are ladies and $4$ are men. Assume $X$ and $Y$ have no comman friends. Then the total number of ways in which $X$ and $Y$ together can throw a party inviting $3$ ladies and $3$ men, so that $3$ friends of each of $X$ and $Y$ are in this party is :
$484$
$485$
$468$
$469$
A father with $8$ children takes them $3$ at a time to the Zoological gardens, as often as he can without taking the same $3$ children together more than once. The number of times he will go to the garden is
If $^{{n^2} - n}{C_2}{ = ^{{n^2} - n}}{C_{10}}$, then $n = $
In how many ways can $21$ English and $19$ Hindi books be placed in a row so that no two Hindi books are together
Let $S=\{1,2,3, \ldots ., 9\}$. For $k=1,2, \ldots \ldots, 5$, let $N_K$ be the number of subsets of $S$, each containing five elements out of which exactly $k$ are odd. Then $N_1+N_2+N_3+N_4+N_5=$