જો સંબંધ $R$ એ ગણ $A$ પરનો સંબંધ છે કે જેથી $R = {R^{ - 1}}$, તો $R$ એ . . . . 

  • A

    સ્વવાચક

  • B

    સંમિત

  • C

    પરંપરિત

  • D

    એકપણ નહીં.

Similar Questions

વાસ્તવિક સંખ્યા  $x$ અને $y$ માટે જો $ xRy \in $ $x - y + \sqrt 2 $ એ અંસમેય સંખ્યા હોય તો સંબંધ  $R$ એ . . . .

ગણ $A\, = \,\{ x\,:\,\left| x \right|\, < \,3,\,x\, \in Z\} $ કે જ્યાં $Z$ એ પૃણાંક સંખ્યા નો ગણ છે ,તેના પરનો સંબંધ $R= \{(x, y) : y = \left| x \right|, x \ne  - 1\}$ આપેલ હોય તો $R$ ના ઘાતગણમાં રહેલ સભ્ય સંખ્યા મેળવો.

  • [JEE MAIN 2014]

ગણ $A$ એ પરનો ખાલી સંબંધએ  . . . .   થાય.

ગણ $\{1,2,3,4\}$ પર સંબંધ $R$ એ $R =\{(1,2),\,(2,2),\,(1,1),\,(4,4)$ $(1,3),\,(3,3),\,(3,2)\}$ દ્વારા આપેલ છે. 

જો $N$ એ પ્રાકૃતિક  સંખ્યાનો ગણ છે અને સંબંધ $R$ એ $N$ પર આ મુજબ વ્યાખ્યાયિત છે  $R=\left\{(x, y) \in N \times N: x^{3}-3 x^{2} y-x y^{2}+3 y^{3}=0\right\} $ તો સંબંધ $R$ એ . . . .

  • [JEE MAIN 2021]