ગણ $A = \{1,2,3,4, 5\}$ અને સંબંધ $R =\{(x, y)| x, y$ $ \in A$ અને $x < y\}$ તો $R$ એ . . .
સ્વવાચક
સંમિત
પરંપરિત
એકપણ નહીં.
જો સંબંધ $R$ એ ગણ $N$ પરએ રીતે વ્યાખ્યીત છે કે જેથી $\{(x, y)| x, y \in N, 2x + y = 41\}$. તો $R$ એ . . .
ગણ $A$ એ ધન પૂર્ણાકોની ક્રમયુક્ત જોડોનો ગણ છે. ગણ $A$ પર $R$ એ જો $x v=y u$ તો અને તો જ $(x, y) R (u, v)$ દ્વારા વ્યાખ્યાયિત સંબંધ છે. સાબિત કરો કે $R$ એ સામ્ય સંબંધ છે.
સંબંધ $R$ એ $N$ પર “$aRb \Leftrightarrow b$ એ $a$ વડે વિભાજય છે.”દ્વારા વ્યાખ્યાયિત હોય તો સંબંધએ . . . .
ધારો કે $R$ એ ، જો $2 a+3 b$ એ $5$ નો ગુણિત હોય, તો $a R b, a, b \in N$ ' મુજબ વ્યાખ્યાયિત $N$ પરનો સંબંધ છે. તો $R$ એ
જો ગણ $A$ માં આઢ કરતાં નાની યુગ્મ પ્રાકૃતિક સંખ્યા છે અને $B$ માં સાત કરતાં નાની અવિભાજય સંખ્યા હોય તો $A $થી $B$ પરના સંબંધની સંખ્યા મેળવો