$\left| {\,\begin{array}{*{20}{c}}{x + 1}&{x + 2}&{x + 4}\\{x + 3}&{x + 5}&{x + 8}\\{x + 7}&{x + 10}&{x + 14}\end{array}\,} \right| = $

  • A

    $2$

  • B

    $-2$

  • C

    ${x^2} - 2$

  • D

    इनमें से कोई नहीं

Similar Questions

यदि $f(\theta)=\left|\begin{array}{ccc}-\sin ^{2} \theta & -1-\sin ^{2} \theta & 1 \\ -\cos ^{2} \theta & -1-\cos ^{2} \theta & 1 \\ 12 & 10 & -2\end{array}\right|$ द्वारा परिभाषित फलन $f :\left[\frac{\pi}{4}, \frac{\pi}{2}\right] \rightarrow R$ के निम्नतम तथा उच्चतम मान क्रमशः $m$ तथा $M$ हैं, तो क्रमित युग्म $( m , M )$ बराबर है

  • [JEE MAIN 2020]

यदि $\left| {\,\begin{array}{*{20}{c}}{y + z}&x&y\\{z + x}&z&x\\{x + y}&y&z\end{array}\,} \right| = k(x + y + z){(x - z)^2}$,  तब $k = $

सारणिकों के गुणधर्मों का प्रयोग करके सिद्ध कीजिए :

$\left|\begin{array}{ccc}1 & x & x^{2} \\ x^{2} & 1 & x \\ x & x^{2} & 1\end{array}\right|=\left(1-x^{3}\right)^{2}$

$\left| {\,\begin{array}{*{20}{c}}{a + b}&{b + c}&{c + a}\\{b + c}&{c + a}&{a + b}\\{c + a}&{a + b}&{b + c}\end{array}\,} \right| = K\,\,\left| {\,\begin{array}{*{20}{c}}a&b&c\\b&c&a\\c&a&b\end{array}\,} \right|\,,$ तो $K = $

माना $a , b , c , d$ एक समांतर श्रेढ़ी में है, जिसका सार्वअन्तर $\lambda$ है। यदि $\left|\begin{array}{lll} x + a - c & x + b & x + a \\ x -1 & x + c & x + b \\ x - b + d & x + d & x + c \end{array}\right|=2$ है, तो $\lambda^{2}$ का मान बराबर है ......... |

  • [JEE MAIN 2021]